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Theory Review
Ellis-Jaffe Sum Rule (MS Scheme) Ellis, Jaffe (1973)

Nachtmann (1973)
OPE for the Nachtmann moment of the 

nucleon structure function

twist 4

twist 6

twist 2

C̄(Q,µ)θ̄(Q,µ) = Ĉ(Q)θ̂Renormalization scale independent Wilson 
coefficients and matrix elements

At twist 2: matrix elements of (flavor) non-
singlet axial current
At twist 4: reduced matrix elements of
twist 6: important to fit the data

J5a
µ = ψ̄γµγ

5taψ(x)

Ra
2σ = gψ̄G̃σργ

ρtaψ for details, see for example: 
Campanario, Pineda (2005)

sum of elastic 
and inelastic 
contribution
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Theory Review
Bjorken Sum Rule (MS Scheme)

twist 4 twist 6twist 2

Wilson Coefficients at twist-2 are known to four loops

gA is the neutron beta-decay constant

a8 is the hyperon decay constant

other matrix elements need to be fitted from the data

data is available for wide range of Q2 values

Larin & Vermaseren (1991)
Larin, Ritbergen & Vermaseren 

(1997)
Baikov, Chetyrkin & Kuhn (2010)

For EJ & Bj Sum rules

gA = 1.2695± 0.0029

a8 = 0.572± 0.019 Campanario, Pineda (2005)
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Data
Ellis-Jaffe Sum Rule
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The systematic errors obtained by these procedures are
then summed in quadrature to give
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In order to study the systematic error on the extrapola-
tion at very low x, we compared the moments extracted
using different parametrizations of g1. We choose a Regge
inspired form from Ref. [7] and two QCD fits from
Refs. [33,34]. The difference was significant only for M1,

for which the various errors are shown in Fig. 6 and
separately given in Table II.

According to Eq. (18) the contribution from the proton
elastic peak should be added to the inelastic moments
obtained above. The Q2 dependence of the proton elastic
form factors is parametrized as in Ref. [35], modified
accordingly to the recent data on GE=GM [36], as described
in Ref. [37]. The uncertainty on the form factors is taken to
be equal to 3% according to the analysis of Ref. [35], and is
added quadratically to both the statistic and the systematic
errors. The elastic contribution Mel

n !Q2" turns out to be a
quite small correction for Q2 * n !GeV=c"2. Our final
results for the total (inelastic $ elastic) moments with
n # 1; 3; 5 and 7 are shown in Fig. 7. Note also that the
amount of the measured experimental contribution to
Mn!Q2" is at least 50%, and the systematic uncertainties
increase significantly as Q2 increases.

FIG. 7. Total (inelastic $ elastic) Nachtmann moments Mn!Q2" (filled circles) [see Eq. (18)] extracted from the proton world data in
the range 0:17 ) Q2 ) 30 !GeV=c"2 for n # 1; 3; 5 and 7. Open squares and triangles correspond to the inelastic and elastic
contributions, respectively. Statistical errors are reported for all three terms; in the case of the total moments the systematic errors are
represented by the shaded bands.
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elastic
inelastic

Fixed a0 = 0.140 to agree with data at large Q
Q (GeV)
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Osipenko et. al. (2005)
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Data

Deur et. al. (2008)
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Order by order 
Comparison

with MS

Ellis-Jaffe

Bjorken perturbation series 
diverges due to 

renormalon ambiguity or 
factorial growth

Thus power corrections 
are also unstable in MS 

OPE !!

—

—



Factorial growth in pert. series

Arise due to IR-sensitivities in the loop-
integral: in MS IR-region is included in the 
loop integrals

can be calculated to all orders in pert. theory 
with large nf approximation

strength of the renormalon ambiguity can be 
quantified perturbatively

Renormalons
in a snapshot for a detailed review, See

Beneke (1999)

an ∼ n!
C =

�

n

anαn+1
s

Hoang, AJ, Stewart, 
Scimemi (2008)C = Pp Λp

QCD × div.integral

perturbative

—



Test for renormalon
via renormalon sum rule

Hoang, AJ, Scimemi,
Stewart (to appear)
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Finiteness of Observable
renormalon cancellations in OPE

may have a renormalon 
canceling a subleading 

renormalon in CB , 0

renormalons in Wilson coefficients cancel 
against higher twist matrix elements

Luke, Manohar, 
Savage (1994)

Examples where this happens:
• heavy meson mass-splitting (B-B* and D-D*)

• R-ratio
• Ellis-Jaffe & Bjorken sum rule
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+ Ĉ0(Q)

â0
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MSR Scheme
a solution to the problem

subtract the asymptotic growth from Wilson 
coefficients

add it back to the corresponding matrix element 
at higher twist

CMSR
i (Q, R) = Ĉi(Q)− R2

Q2

Ĉ1(Q)
Ĉ1(R)

�
Ĉ0(R)− [Ĉ0(R)]LL

�

fMSR
i (R) = f̂i +

R2

Q2

ai

Ĉ1(R)

�
Ĉ0(R)− [Ĉ0(R)]LL

�

R is the IR subtraction scale in the Wilson coefficient (ΛQCD � R)

Hoang, AJ, Scimemi,
Stewart (2009)



MSR Scheme
scholium

both Wilson coefficient and matrix element are now free 
of the renormalon ambiguity

overall OPE does not change but gives reliable 
predictions, converges faster.

power corrections will be of their true size (~ΛQCD) and 
won’t depend on the order in the perturbation theory

new MSR OPE has features of Wilsonian OPE, i.e., 
Wilson coefficients contain power like terms

matrix elements in MSR and MS are perturbatively 
related

—



R-evolution
resumming IR-logs in Wilson coefficients

Solution of this 
equation resums large 

logs of R/Q

μ0
μ

R0
R

increasing μ : less UV 
fluctuations in C and 

more in matrix elements

increasing R : more IR 
fluctuations in the matrix 

elements and less in C

fluctuations absorbed 
in the matrix element

fluctuations absorbed 
in the Wilson 
Coefficients

Analogy with μ-RGE

Hoang, AJ, Scimemi,
Stewart (2008)

R
d

dR
C0(Q, R) = −R2

Q2
Ĉ1(Q)γ[αs(R)]



OPE in MSR

Lets compare theory predictions from leading 
twist in MSR scheme and then fit for matrix 

elements at higher twist
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Comparison with Data
Ellis-Jaffe sum rule at leading twist in MSR 

without a fit to power corrections (1 parameter)

â0 = 0.155± 0.018(expt.)+0.006
−0.01 (th.) = 0.155 +0.019

−0.021

Naive fit with Q > 2GeV data only in MS:
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Order by 
Order

Ellis-Jaffe sum rule 
at leading twist

Q
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Comparison with Data
Bjorken sum rule at leading twist in MSR

without a fit to power corrections
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Fits for power corrections
EJSR: MSR vs. MS

we do 4-parameter fit to the global data for Ellis-Jaffe sum rule

we take half the error as systematic and 100% correlation in systematic errors 
as our model for correlation matrix

order â0
9

−8
9

�
f̂3
12 + f̂8

36

�
(GeV2) −8

81 f̂0 (GeV2) hB + h0 (GeV4) χ2

tree 0.0022 0.0526 −0.0713 0.0107 1.18
1− loop 0.0117 0.0593 −0.0603 0.0081 1.05
2− loop 0.0138 0.0350 −0.0109 0.0039 1.05
3− loop 0.0137 −0.0893 0.1899 −0.0132 1.54

MS

MSR (R0 = 1 GeV)
order â0

9
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9

�
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3
12 + fMSR
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36
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81 fMSR
0 (GeV2) hB + h0 (GeV4) χ2

tree 0.0022 0.0526 −0.0713 0.0107 1.18
NLL 0.0125 0.0399 −0.0713 0.0095 1.12

NNLL 0.0164 0.0568 −0.0912 0.0048 0.96
N3LL 0.0156 0.0559 −0.0892 0.0050 0.97

—

/dof

/dof



we do 2-parameter fit with only JLab CLAS  EG1b data for Bjorken sum rule: 
latest data, largest data set from single experiment, and spans both pert. and 
non. pert. regions

100% correlation in correlated systematic errors is assumed

Fits for power corrections
BjSR: MSR vs. MS

MS

MSR (R0 = 1 GeV)

order −4
27 f̂ (GeV2) hB (GeV4) χ2

tree −0.1751 0.0884 0.41
1− loop −0.0455 0.0318 0.38
2− loop −0.0045 0.0182 0.40
3− loop 0.0116 0.0160 0.41

order −4
27 fMSR (GeV2) hB (GeV4) χ2

tree −0.1751 0.0884 0.41
NLL −0.0857 0.0302 0.38

NNLL −0.0281 −0.0083 0.45
N3LL −0.0355 −0.0034 0.43

large errors 
and large 

correlations !!

—

—

/dof

/dof



Fits for power corrections
Error matrix from expt. & theory errors





6.33× 10-6 1.66× 10-7 −1.21× 10-5 3.63× 10-6

1.66× 10-7 7.13× 10-5 −1.1× 10-4 1.31× 10-5

−1.21× 10-5 −1.1× 10-4 2.38× 10-4 −3.91× 10-5

3.63× 10-6 1.31× 10-5 −3.91× 10-5 7.73× 10-6




�

5.45× 10-3 −3.04× 10-3
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�

�

�

â0
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3 = −0.036± 0.07(expt.)+0.01

−0.01(th.)

hB = −0.003± 0.04(expt.)+0.005
−0.003(th.)

â0

9
= 0.0156± 0.0025(expt.)+0.0006

+0.0005(th.)

hB + h0 = 0.005± 0.003(expt.)+0.006
−0.001(th.)

−8
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�
1
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36

fMSR
8

�
= 0.056± 0.008(expt.)+0.009

−0.005(th.)

−8
81
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0 = −0.089± 0.015(expt.)+0.011

−0.027(th.)

all fi are shown for R0 = 1 GeV
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BjSR in MSR including 
power corrections
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Conclusions

Obtained stable OPE in new MSR scheme

Resummation of logs of Q/R using the R-RGE

Obtained reliable fits for higher twist matrix 
elements


